Crypto metrics, Atsiliepimai


crypto metrics

Ethereum;Cryptocurrency;Blockchain;Fraudulent activity;K-Means clustering;Support vector machine;Random forest classifier Abstract: The phenomenon of cryptocurrencies continues to draw a lot of attention from investors, innovators and the general public. There are over different cryptocurrencies, including Bitcoin, Ethereum and Litecoin.

crypto metrics

While the scope of blockchain technology and cryptocurrencies continues to increase, identification of unethical and fraudulent behaviour still remains an open issue.

The absence of regulation of the cryptocurrencies ecosystem and the lack of transparency of the transactions may lead to an increased number of fraudulent cases.

crypto metrics

In this research, we have analyzed the possibility to identify fraudulent behaviour using different classification techniques. Based on Etherium transactional data, we constructed a transaction network crypto metrics was analyzed using a graph traversal algorithm.

  1. Geriausia dvejetainio iq pasirinkimo strategija
  2. Было принято решение уничтожить Раму II в безопасном удалении от Земли.
  3. Мне приходится использовать методики для усиления.
  4. Bitcoin prekyba - Posts | Facebook

Data clustering was performed crypto metrics three machine learning algorithms: k-means clustering, Support Vector Machine and random forest classifier. The performance of the classifiers was evaluated using a few accuracy metrics that can be calculated from confusion matrix.

crypto metrics

Research results revealed that the best performance was achieved using a random forest classification model Internet:.